Lame'
Lame` Parameters
In the context of solid mechanics and material science, Lame's parameters, also known as Lame constants or elastic constants, are two parameters used to describe the elastic properties of an isotropic (uniform in all directions) linear elastic material. These parameters are denoted by λ (lambda) and μ (mu).
The Lame constants are used in the linear elasticity theory to relate stress and strain in a material. The relationship between stress (σ) and strain (ε) in a three-dimensional isotropic linear elastic material is given by:
σij=λϵkkδij + 2μϵij
Where:
- σij is the stress tensor,
- ϵij is the strain tensor,
- δij is the Kronecker delta (equal to 1 for i=j and 0 for i≠j),
- λ is Lame's first parameter,
- μ is Lame's second parameter.
The Lame parameters are related to other elastic constants, such as Young's modulus (E) and Poisson's ratio (ν), through the following relationships:
λ=E⋅ν(1+ν)(1−2ν)
μ=E2(1+ν)
Lame's Parameter Calculators
- Lame's First Parameter (G,M): Lame's first parameter (λ) based on the shear modulus and p-wave modulus.
- Lame's First Parameter (K,E):Lame's First Parameter (λ) based on the Bulk Modulus and Young's Modulus.
- Lame's First Parameter (K,ν): Lame's First Parameter based on the bulk modulus and Poisson's ratio.
- Lame's First Parameter (E,G): Lame's First Parameter in terms of the Young's Modulus and the Shear Modulus.
- Lame's First Parameter (K,G): Lame's First Parameter in terms of the Bulk Modulus and the Shear Modulus.
- Lame's First Parameter (E,ν): Lame's First Parameter based on the Young's modulus and Poisson's ratio.
- Lame's First Parameter (G,ν): Lame's First Parameter based on the Shear modulus and Poisson's ratio.
Lame' Equations
- Lame's First Parameter (G,M) MichaelBartmess Use Equation
Lame' WikiClips
- Attachments
No attachments |