Quantcast
Loading [MathJax]/jax/output/CommonHTML/jax.js

Generalized Harmonic Number

Last modified by
on
Jun 25, 2021, 2:08:37 PM
Created by
on
Dec 7, 2015, 2:38:47 AM
Hn,m=nk=11km
(n)Number of Terms
(m)Exponent of the Inverse
Tags
UUID
a44f013d-9c8b-11e5-9770-bc764e2038f2

The Generalized Harmonic calculator computes the harmonic number of the order n of m.

INSTRUCTIONS: Enter the following:

  • (n) Number of terms
  • (m) Exponent of terms

Generalized Harmonic Number (Hm,n): The calculator returns the number as a real.

The Math / Science

This equation computes the generalized harmonic number of the order n of m:

Hn,m=nk=11km

 

Special cases of the generalized harmonic number

The limit as n tends to infinity exists if m > 1.

If m = 0, Hn,0=n

If m = 1, Hn,1=Hn=harmonic number  See Harmonic Number.

 

Other notations

Other syntactic notations include:

Hn,m=Hmn=Hm(n)


  • Comments
  • Attachments
  • Stats
No comments
This site uses cookies to give you the best, most relevant experience. By continuing to browse the site you are agreeing to our use of cookies.