∫ba1uz2+vz+wdz∫ba1uz2+vz+wdz
Last modified by
on
Jul 24, 2020, 6:28:07 PM
Created by
on
Dec 27, 2013, 8:10:29 PM
∫ba1uz2+vz+wdz=(2√4uw-v2)⋅tan-1(2ub+v√4uw-v2)-(2√4uw-v2)⋅tan-1(2ua+v√4uw-v2)∫ba1uz2+vz+wdz=(2√4uw−v2)⋅tan−1(2ub+v√4uw−v2)−(2√4uw−v2)⋅tan−1(2ua+v√4uw−v2)
Enter a value for all fields |
|
|
|
Tags | |
UUID | e6cec9bb-da27-11e2-8e97-bc764e04d25f |
|
This equation calculates the definite integral for the expression F(z)=1uz2+vz+wF(z)=1uz2+vz+w.
This equation, ∫ba1uz2+vz+wdz∫ba1uz2+vz+wdz, references 0 pages
This equation, ∫ba1uz2+vz+wdz∫ba1uz2+vz+wdz, is used in 0 pages