The characteristic polynomial of a 3x3 matrix calculator computes the characteristic polynomial of a 3x3 matrix.
INSTRUCTIONS: Enter the following:
Polynomial (CP): The calculator returns the:
The characteristic polynomial (CP) of an nxn matrix `A` is a polynomial whose roots are the eigenvalues of the matrix `A`. It is defined as `det(A-λI)`, where `I` is the identity matrix. The coefficients of the polynomial are determined by the determinant and trace of the matrix.
For the 3x3 matrix A:
A = `[[A_11,A_12, A_13],[A_21,A_22,A_23],[A_31,A_32,A_33]]`,
the characteristic polynomial can be found using the formula:
CP = -λ3+ tr(A)λ2 - 1/2( tr(A)2 - tr(A2)) λ + det(A),
where:
For the Characteristic Polynomial of a 2x2 matrix, CLICK HERE