From UCDavis Chemiwiki
The "Arrhenius Equation" was physical justification and interpretation in 1889 by Svante Arrhenius, a Swedish chemist. Arrhenius performed experiments that correlated chemical reaction rate constants with temperature. After observing that many chemical reaction rates depended on the temperature, Arrhenius developed this equation to characterize the temperature-dependent reactions.
`k= A e^((-E_(a)) / (k_(B)T))`
or
`ln k = lnA - (E_(a)) / (k_(B)T)`
With the following terms:
k: Chemical reaction rate constant
A: The pre-exponential factor or frequency factor
Ea: The activation energy is the threshold energy that the reactant(s) must acquire before reaching the transition state.
R: The gas constant.
T: The absolute temperature at which the reaction takes place.
The exponential term in the Arrhenius Equation implies that the rate constant of a reaction increases exponentially when the activation energy decreases. Because the rate of a reaction is directly proportional to the rate constant of a reaction, the rate increases exponentially as well. Because a reaction with a small activation energy does not require much energy to reach the transition state, it should proceed faster than a reaction with a larger activation energy.
In addition, the Arrhenius Equation implies that the rate of an uncatalyzed reaction is more affected by temperature than the rate of a catalyzed reaction. This is because the activation energy of an uncatalyzed reaction is greater than the activation energy of the corresponding catalyzed reaction. Since the exponential term includes the activation energy as the numerator and the temperature as the denominator, a smaller activation energy will have less of an impact on the rate constant compared to a larger activation energy. Hence, the rate of an uncatalyzed reaction is more affected by temperature changes than a catalyzed reaction.
If we look at the Arrhenius equation more carefully, one notices that the natural logarithm form of the Arrhenius equation is in the form of y = mx + b. In other words, it is similar to the equation of a straight line.
`ln k = lnA - (E_(a)) / (k_(B)T)`
where temperature is the independent variable and the rate constant is the dependent variable. So if one were given a data set of various values of k, the rate constant of a certain chemical reaction at varying temperature T, one could graph ln(k) versus 1/T. From the graph, one can then determine the slope of the line and realize that this value is equal to -Ea/R. One can then solve for the activation energy by multiplying through by -R, where R is the gas constant.