Quantcast

Cramer's Rule Calculator

 
Tags

The Cramer's Rule Calculator computes the solution and determinants for two simultaneous linear equations and three simultaneous linear equations.

The Two Equation Solution uses the following form:

  • a1 • x + b1 • y = c1
  • a2 • x + b2 • y = c2

The solution utilizes the determinant of the 2x2 matrix.

The Three Equations Solution uses the following form:

  •  a1 • x + b1 • y + c1 • z = d1
  •  a2 • x + b2 • y + c2 • z = d2
  •  a3 • x + b3 • y + c3 • z = d3

The solution utilizes the determinant of the 3x3 matrix.

The Math

Derivation (2D)1

Given a system of two simultaneous equations:

    `a_1 * x + b_1 *y = c_1`

    `a_2 * x + b_2 *y = c_2`

 

we can represent these two equation in matrix form using a coefficient matrix, as `[[a_1,b_1],[a_2,b_2]] [[x],[y]] = [[c_1],[c_2]]`, where we refer to `[[a_1,b_1],[a_2,b_2]]` as the coefficient matrix.

Using Cramer's rule we compute the determinants of the coefficient matrix:  `D = |[a_1,b_1],[a_2,b_2]| = a_1*b_2 - b_1*a_2`

We also form the `D_x` and `D_y` determinants as:

`D_x = |[c_1,b_1],[c_2,b_2]|` and

`D_y = |[a_1,c_1],[a_2,c_2]|`

Continuing with Cramer's Rule, we compute the values of and y as:

     `x = D_x/D`

     `y = D_y/D`

 

Derivation (3D)

Given a system of three simultaneous equations:

     `a_1 * x + b_1 *y + c_1*z = d_1`

     `a_2 * x + b_2 *y + c_2*z = d_2`

     `a_3 * x + b_3 *y + c_3*z = d_3`

we can represent these three equation in matrix form using a coefficient matrix, as `[[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]] [[x],[y],[z]] = [[d_1],[d_2],[d_3]]`, where we refer to `[[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]]` as the coefficient matrix.

Using Cramer's rule we compute the determinant of the coefficient matrix:  `D = |[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]|  = a_1*(b_2*c_3 - c_2*b_3) + b_1 * (c_2*a_3 - a_2*c_3) + c_1 * (a_2*b_3 - b_2* a_3)`

We also form the `D_x`, `D_y`, and `D_z` determinants as:

`D_x = |[d_1,b_1,c_1],[d_2,b_2,c_2],[d_3,b_3,c_3]|`

`D_y = |[a_1,d_1,c_1],[a_2,d_2,c_2],[a_3,d_3,c_3]|`

`D_z = |[a_1,b_1,d_1],[a_2,b_2,d_2],[a_3,b_3,d_3]|`

Continuing with Cramer's Rule, we compute the values of x, y, and z as:

     `x = D_x/D`

     `y = D_y/D`

     `z = D_z/D`

 


Matrix Calculators

  1. Cramer's Rule - Wikipedia