The Chord Length from Arc Length and Radius calculator computes the length of a chord (d) on a circle based on the radius (r) of the circle and the length of the arc (a). 
INSTRUCTIONS: Choose units and enter the following:
Chord of a Circle (d): The calculator compute the length of the chord in meters. However, this can be automatically converted to other length units via the pull-down menu. The calculator also returns the inner angle (θ) in degrees.
The Math
The formula for the length of a chord is:
d = 2•r•sin (a/2r)
where:
The length of the chord (d) is the distance between two points on a circle.
- θ= a / r
- sin (θ/2) = ½ d/r
- d = 2•r•sin (θ/2)
- d = 2•r•sin (a/2r)
- Circle Area - Computes the area of a circle given the radius (A = π r2).
- Area of Circle Arc Segment f(r,θ) - Computes the area of an arc segment of a circle given the radius (r) and angle (θ)
- Area of Circle Arc Segment Area f(r,h) - Computes the area of an arc segment of a circle given radius (r) and the depth (h) into the circle.
- Area of Circle Sector f(r,Θ) - Computes the area of a sector (pie slice) of a circle given the radius (r) and angle (Θ).

- Angle of Circle Sector f(r,h) - Computes the angle in a circle from the radius and depth of the chord.
- Area of Circle Annulus - Computes the area of an annulus (ring) given the inner radius (r) and outer radius (R).
- Radius of Circle from Center and a Point - Computes the radius of a circle given the center point (h,k) and any other point (x,y) on the circle.
- Circumference of Circle - Computes the circumference of a circle given the radius (C = 2 π r).
- Circle Arc Length - Computes the length of an arc length on a circle given the radius (r) and angle (Θ)
- Circle within a Triangle - Computes the radius of a circle inscribed within a triangle given the length of the three sides (a,b,c) of the triangle.
- Circle around a Triangle - Computes the radius of a circle that circumscribes a triangle given the length of the three sides (a,b,c) of the triangle.
- Circle Diameter from Area - Computes the radius and diameter of a circle from the area.
- Circle Radius from Circumference - Computes the radius of a circle given the circumference.

- Circle Circumference from Area - Computes the circumference of a circle given the area.
- Circle Radius from Area - Computes the radius of a circle given the area.
- Chord Length: Computes the length of a chord in a circle from the radius and height.
- Chord Length from Arc Length and Radius: Computes the length of a chord on a circle based on the circle's radius (r) and the length of the arc (a).
- Circle Radius from Chord - Computes the radius of a circle based on the length of a chord and the chord's center height.
- Circle Equation from Center and one Point - Develops the general equation of a circle based on the coordinates of the center (h,k) and any point on the circle (x,y).
- Circle Equation from Three Points: Develops the general equation of a circle that goes through three points that are not in a straight line.
- Circle with same Perimeter as an Ellipse - Computes the radius of the circle with the same perimeter of an ellipse defined by the semi-major and semi-minor axes.
- Rectangles to Cover a Circle - Computes the number of rectangles needed to minimally cover a circle based on the circle's diameter and the length and width of the rectangles.