Quantcast

Doppler effect for light

Last modified by
on
Sep 28, 2022, 5:40:08 PM
Created by
on
Jun 9, 2016, 5:02:04 PM
`D(v) = sqrt((1-(beta))/(1+(beta)))`
`(v)"velocity"`
Tags
UUID
e438145c-2e63-11e6-9770-bc764e2038f2

The Doppler Effect of Light equation is used to evaluate how fast a source and observer are moving either towards, or away from each other. It is calculated using:

  • `v` = the rate at which the separation between the source and the receiver is increasing (or decreasing).

Note: `beta` is a common substitution for the fraction, `v/c` where `v` is the same as stated above and `c` is the speed of light.

Note: If the object is coming closer to you then you will have to mentally swap the positive and negative signs, if the object is getting further away from you then you can leave it as is.

The Math / Science

The doppler effect equation usually relies on the motion of the receiver, the observer and the medium. But when looking at the doppler effect of light, we recognize that light does not have a medium. So we can only rely on the relative motion of our source and observer. 

And that motion would be `v`. As stated earlier: `v` is the rate at which the separation between the source and the receiver is increasing. `v` is positive if the separation between the source and receiver is increasing, and it is negative if the separation between the two is decreasing.

The Doppler Effect of Light equation is derived from looking at a different version of the Doppler Effect equation and adding some "relativity" to it.

If we take a look at this equation:

`f = f_0  sqrt((1-(v/c))/(1+(v/c)))`

then divide `f_0` to the left side,

`f/f_0 = sqrt((1-(v/c))/(1+(v/c)))`

if you haven't already noticed, the Doppler Effect of Light equation has `D(v)` on the left side. Which is precisely what `f/f_0` is. `D(v)` is a ratio of the observed and source frequencies!

More Calculators:

References

24.7 Doppler shifts and clock time by Benjamin Crowell, Light and Matter  licensed under the Creative Commons Attribution-ShareAlike license.


This equation, Doppler effect for light, references 1 page
This equation, Doppler effect for light, is used in 4 pages
  • Comments
  • Attachments
  • Stats
No comments
This site uses cookies to give you the best, most relevant experience. By continuing to browse the site you are agreeing to our use of cookies.