R - Gas Constant (SI units)
vCalc
Reviewed
R (Gas Constant)=8.31446261815324 J/Mol⋅K
Share Result
Tags | |
The Gas Constant, R, from the Ideal Gas Law is 8.31446261815324 Joules / (moles • Kelvin). The gas constant (also known as the molar, universal, or ideal gas constant, denoted by the symbol R or R) is a physical constant which is featured in many fundamental equations in the physical sciences. The Gas Constant (R) is equivalent to the Boltzmann constant, but expressed in units of energy (i.e. the pressure-volume product) per temperature increment per mole (rather than energy per temperature increment per particle). The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law.
The Gas Constant (R) appears in many formulas including the following:
- Ideal Gas Law: PV = nRT (Click any Parameter)
- Clausius-Clapeyron Equation: ln(P2P1)=Δ
Chemistry Calculators
- R - Gas Constant: 8.3144626181532 J/(K⋅mol)
- Boyle's Law Calculator: P1 • V1 = P2 • V2
- Charles Law Calculator: V1• T2 = V2 • T1
- Combined Gas Law Calculator: P•V / T= k
- Gay-Lussac Law: T1•P2 =T2•P1
- Ideal Gas Law: P•V = n•R•T
- Bragg's Law: n·λ = 2d·sinθ
- Hess' Law: ΔH0rxn=ΔH0a+ΔH0b+ΔH0c+ΔH0d
- Internal Energy: ΔU = q + ω
- Activation Energy: Ea = (R*T1⋅T2)/(T1 - T2) ⋅ ln(k1/k2)
- Arrhenius Equation: k = AeE_a/(RT)
- Clausius-Clapeyron Equation: ln(P2/P1) = (ΔHvap)/R * (1/T1 - 1/T2)
- Compressibility Factor: Z = (p*Vm)/(R*T)
- Peng-Robinson Equation of State: p = (R*T)/(Vm - b) - (a*α)/(Vm2 + 2*b*Vm - b2)
- Reduced Specific Volume: vr = v/(R* Tcr / Pc)
- Van't Hoff Equation: ΔH0 = R * ( -ln(K2/K1))/ (1/T1 - 1/T2)
Reference
- Some descriptive text in the description of the Gas constant comes from Wikipedia: wikipedia/wiki/Gas_constant