The Simple Statistics calculator computes the most common observational statistics for columns in a table of data.
INSTRUCTIONS: Enter the following:
- (x) Numeric Observations. Enter comma separated numeric values e.g. (4,-1.2,8,9).
STATISTICS: The calculator returns the descriptive statistics below for the identified column.
- count - number (n) of values in the column.
- min - minimum value
- max - maximum value
- sum(Σx) - sum of the values in a set.
- Σx² - sum of the squared values
- (Σx)² - square of the summed values.
- mean - mean (average) of values
- median - middle ordered value
- mid point - mid point of value range
- mode - most frequent observation
- range - difference between the max and the min.
- MAD - Mean Absolute Deviation
- SDOM - Standard Deviation of Mean
- sort up - values in ascending order.
- sort down - values in descending order.
- var-pop - population variance of the values
- sd-pop - population standard deviation of the values
- var-sample - sample variance of the values
- sd-sample - sample standard deviation of the values
How to Enter Data
Enter the data in comma separated values
The Math
The formulas for the statistics are as follows:
sum
`S = sum(x)`
sum of squares
Σx²`= sum(x^2)`
square of the sum
(Σx)² = `(sum(x))^2`
averages
- mean: `mu = (sum(x))/n` where n is the number of observations
- median: middle value if in an odd number of observations. If there is an even number of observations, it's the average of the two middle values.
- mid-point: `mp = (min + max)/2`
variance
- Population Variance: `sigma^2 = (sum_1^n(x_n-mu)^2)/n`
- Sample Variance: `sigma^2 = (sum_1^n(x_n-mu)^2)/(n-1)`
standard deviation
- Population Standard Deviation: `sigma = sqrt((sum_1^n(x_n-mu)^2)/n)`
- Sample Standard Deviation: `sigma = sqrt((sum_1^n(x_n-mu)^2)/(n-1))`
- MAD = `1/n sum_(i=1)^n | x_i - barx |`
Statistics Calculators
Growth Calculators
Statistics in Culture
"There are three kinds of lies: lies, damn lies and statistics." Mark Twain