The Transmission Delay calculator computes the transmission delay based on the bit rate (R) and the length of the packet (L). NOTE: New unit defaults. Packet lengths have a default of bytes and transmission speeds are in Megabits per second (Mbit/s). You may choose other units via pull-down menu.
INSTRUCTIONS: Choose units and enter the following:
Transmission Delay (TD): The calculator returns the delay in milliseconds. However, this can be automatically converted to compatible units via the pull-down menu.
Common Transmission Speeds
Data Rate | Transfer Medium |
1.5 Mbit/s | ADSL Lite |
1.544 Mbit/s | T1/DS1 |
2.048 Mbit/s | E1 / E-carrier |
4 Mbit/s | ADSL1 |
10 Mbit/s | Ethernet |
11 Mbit/s | Wireless 802.11b |
24 Mbit/s | ADSL2+ |
44.736 Mbit/s | T3/DS3 |
54 Mbit/s | Wireless 802.11g |
100 Mbit/s | Fast Ethernet |
155 Mbit/s | OC3 |
600 Mbit/s | Wireless 802.11n |
622 Mbit/s | OC12 |
1 Gbit/s | Gigabit Ethernet |
1.3 Gbit/s | Wireless 802.11ac |
2.5 Gbit/s | OC48 |
5 Gbit/s | USB 3.0 |
9.6 Gbit/s | OC192 |
10 Gbit/s | 10 Gig Ethernet, USB 3.1 |
40 Gbit/s | Thunderbolt 3 |
100 Gbit/s | 100 Gigabit Ethernet |
The formula for Transmission Delay is:
TD = L/R
where:
Assuming that packets are transmitted in a first-come-first-served manner, as is common in packet-switched networks, our packet can be transmitted only after all the packets that have arrived before it have been transmitted. Denote the length of the packet by L bits, and denote the transmission rate of the link from router A to router B by R bits/sec. For example, for a 10 Mbps Ethernet link, the rate is R = 10 Mbps; for a 100 Mbps Ethernet link, the rate is R = 100 Mbps. The transmission delay is L/R. This is the amount of time required to push (that is, transmit) all of the packet’s bits into the link. Transmission delays are typically on the order of microseconds to milliseconds in practice.